Critical Control Points in DPR: Quantifying the Multi-Barrier Approach to Treatment

Authors:

  • Ben Stanford PhD, Troy Walker MIEAus - Hazen and Sawyer
  • Stuart Khan PhD - University of New South Wales
  • Shane Snyder PhD - University of Arizona
  • Cedric Robillot PhD - Head Start Development

Learn more about critical control points in DPR applications.

Direct Potable Reuse (DPR) is the supply of highly treated reclaimed water directly to a drinking water treatment plant or distribution system, with or without an engineered storage buffer. This differs from Indirect Potable Reuse (IPR) which is already practiced in many areas of the country and involves the inclusion of an environmental buffer (such as a lake, reservoir or aquifer) prior to arriving at the intake for a drinking water treatment plant. There are a number of potential benefits of DPR relative to IPR, including reduced energy requirements, reduced construction costs and reduced operational costs. DPR may even provide an opportunity to allow potable reuse in situations where a suitable environmental buffer is not available for IPR.

However, a potential obstacle to implementation of DPR is related to the perception and acceptance of potential risks rather than science or engineering that quantify those risks and provide solutions to address them. A number of technical issues relating to the perceived functions of an environmental buffer need to be addressed in a transparent process, including in particular the need to ensure consistent and assured levels of reliability.

Critical control points (CCPs) are locations in a treatment plant, including specific processes and chemical addition steps, that have a direct impact on the quality of finished water as it relates to public health. CCPs must have both a monitoring component, which allows the operator to verify that the process is operating as intended, and a control component, which allows the operator to adjust the functioning of the unit process to improve its performance. While there are many “critical” aspects to the proper and efficient operation of a water, wastewater, or water reuse facility, there are only a handful that have direct bearing on the public health implications of water from that facility. This is a key concept as it allows operations staff to better manage various alarms and issues that will inevitably arise in any treatment process, focusing on those that are critical to public health protection.

However, even with CCPs and a well-trained operations team in place it is important that multiple barriers be a component of direct potable reuse (DPR) systems to manage the total risk from chemical and microbial threats to public health. Our team has been working on a WateReuse-funded project (13-03) to demonstrate the robustness and reliability of DPR processes and to quantify the impacts of specific critical control points within a DPR system to help overcome this obstacle.

Through this project we have identified critical control points (CCPs) for both a full advanced treatment (FAT) membrane based process (MF/RO/UV H2O2/Cl2) and a non-membrane treatment system (Floc/Sed/O3/BAC/GAC/Cl2) using a hazard analysis and critical control point (HACCP) team process and risk assessment. By incorporating a combination of both operational and maintenance data from full scale operating facilities we have been able to quantify the role of each CCP and then use Monte Carlo analysis to demonstrate the robustness (that is the number of contaminants that a given process train can handle) and the redundancy (that is the number of processes that can handle a given contaminant) across all of the CCPs in each DPR scheme. Inherently present in the full-scale operational data is also the reliability aspect of each unit process. Thus, when full-scale data are combined across each unit process/CCP, a Monte Carlo analysis can provide insight into the “worst” case scenarios and then quantify those with a value for probability of occurrence.

This presentation will provide an overview of the CCPs selected for the two water recycling schemes and then will demonstrate the use of Monte Carlo to develop the probability distributions across the processes. The presentation will focus on microbial data in addition to several key chemical parameters and potential surrogate parameters.

For more information, please contact the author at bstanford@hazenandsawyer.com.

Hear about new publications with our email newsletter

We will never share your details with anyone else.

Horizons

Newsletter Newsletter

Horizons Fall 2017 (pdf)

Horizons showcases significant water, wastewater, reuse, and stormwater projects and innovations that help our clients to achieve their goals, and can help you achieve yours. Articles are written by top engineers and process group leaders, demonstrating and explaining the beneficial application of a variety of technologies and tools.

View previous issues »